What is the latest information on Lead and Copper?

Information on Lead:
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The New Hartford WPCA is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing method and steps you can take to minimize exposure is available from the State Drinking Water Hotline or at www.epa.gov/safewater/lead.

Information on Copper:
Copper is an essential nutrient, but some people drinking water in excess of the action level over a relatively short period of time could experience distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson’s disease should consult their personal doctor.

What contaminants might be in the water?
To ensure that tap water is safe to drink, the EPA prescribes the same regulations and standards for tap water as it does for bottled drinking water. The standards limit the allowable amount of contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of land or through the ground, it dissolves naturally occurring minerals and in some cases, radioactive material and substances resulting from the presence of animals or human activity. Substances that may be present source water include the following:

- Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from storm water runoff, wastewater discharges, oil and gas production, mining, or farming.
- Herbicides and pesticides, which may come from a variety of sources, such as agricultural and residential, uses.
- Radioactive contaminants which can be naturally occurring or be the result of oil and gas production and mining activities.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, storm water runoff, and septic system.

New Hartford meets (or) exceeds all compliance standards for its drinking water.

What Type of container is best for storing water?
Consumer Reports has consistently advised that glass or BPA-free plastics such as polyethylene are the safest choices. To be on the safe side, don’t use any container with marking on the recycle symbol showing “7 PC” (that’s code for BPA).

How much emergency water should I keep?
Typically, 1 gallon per person per day is recommended. For a family of four, that would be 12 gallons for 2 days. Humans can survive without food for 1 month, but can only survive 1 week without water.
The New Hartford Water Pollution Control Authority (NHWPCA), and the water system contract operator, The Torrington Water Company are pleased to present this Consumer Confidence Report. The contents of this report and the information about potential contaminants is included to keep you informed about water quality for the year 2021.

FOG
You may not be aware of it, but every time you pour fat, oil, or grease (FOG) down your sink (e.g., bacon grease), you are contributing to a costly problem in the sewer collection system. FOG coats the inner walls of the plumbing in your house as well as the walls of underground piping throughout the community. Over time, these greasy materials build up and form blockages in pipes, which can lead to wastewater backing up into yards, streets, and storm drains. These back-ups allow FOG to contaminate local waters, including drinking water. Communities spend billions of dollars every year to unplug or replace grease-blocked pipes, repair pump stations, and clean up costly and illegal wastewater spills. You can do your part by never pouring fats, oils, or grease down the house or storm drains.

Where does your water come from?
Your water source consists of two gravel systems. The Pine Meadow well is 70 feet in depth and the Black Bridge well is 70 feet in depth and the Black Bridge well is 70 feet in depth and the Black Bridge well is 70 feet in depth and the Black Bridge well is 70 feet in depth and the Black Bridge well is 70 feet in depth. The Pine Meadow well is 70 feet in depth and the Black Bridge well is 85 feet in depth. The system has no other water source. Daily water production averaged 90,131 gallons per day. The system serves a population of approximately 3,150 residents, and certified laboratory analysis was completed by Aqua Environmental Laboratories, Newtown, CT.

Consumer Education & Participation.
We encourage public interest regarding your communities water supply. Regular meetings of the NHWPCA occur on the first Thursday of each month at the New Hartford Town Hall. The public is invited to attend.

Water Conservation—What you can do
You can play a role in conserving water and save yourself money in the process by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. Here are a few tips:

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Did you know that even a pinhole leak wastes up to 170 gallons a day? A dripping faucet can waste more than 3,000 gallons a year. Fix it and you save more than 30,000 gallons a year.
- Minimize evaporation by watering your lawn and flowers in early morning or evening. Aerate lawns and install automatic timers for watering.

Footnotes for the summary of water quality for the calendar year 2021 below:

<table>
<thead>
<tr>
<th>Substance</th>
<th>MCL</th>
<th>MCLG</th>
<th>Amount Detected</th>
<th>Stage</th>
<th>Violation</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform</td>
<td>0</td>
<td>0</td>
<td>< 5</td>
<td>0</td>
<td>No</td>
<td>Naturally present in environment</td>
</tr>
<tr>
<td>Inorganic compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride (2019)</td>
<td>N/A</td>
<td>250 ppm</td>
<td>23.3 ppm</td>
<td>No</td>
<td>Runoff from natural deposits</td>
<td></td>
</tr>
<tr>
<td>Copper * (2019)</td>
<td>13800</td>
<td>Al + 13800ppb</td>
<td>330</td>
<td>90 / 330</td>
<td>No</td>
<td>Corrosion of household plumbing; erosion of natural deposits</td>
</tr>
<tr>
<td>Lead ** (2010)</td>
<td>15 ppb</td>
<td>Al + 15 ppb</td>
<td>4</td>
<td><1 - 4</td>
<td>No</td>
<td>Corrosion of household plumbing; erosion of natural deposits</td>
</tr>
<tr>
<td>Nitrate as N (2011)</td>
<td>10 ppm</td>
<td>10 ppm</td>
<td>1.0</td>
<td><0.5 — 1 — 100</td>
<td>No</td>
<td>Runoff from fertilizer use; leaching from septic tanks</td>
</tr>
<tr>
<td>Sodium (2010)</td>
<td>N/A</td>
<td>N/A</td>
<td>15 ppm</td>
<td>No</td>
<td>Naturally occurring</td>
<td></td>
</tr>
<tr>
<td>Sulfate (2010)</td>
<td>N/A</td>
<td>N/A</td>
<td>5.5</td>
<td>No</td>
<td>Runoff from natural deposits, industrial waste</td>
<td></td>
</tr>
<tr>
<td>Barium MCLG (2016)</td>
<td>2</td>
<td>2</td>
<td>0.06</td>
<td>No</td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Microbiological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>N/A</td>
<td>TT + 5 eu max</td>
<td>0.13 average</td>
<td>0.1 — 0.6</td>
<td>No</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Organic compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Chlorine (2016)</td>
<td>4 ppm</td>
<td>0.7 ppm</td>
<td>0.1 — 1.95</td>
<td>No</td>
<td>By product of drinking water disinfection</td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes</td>
<td>N/A</td>
<td>80 ppb</td>
<td>3.7</td>
<td>3.2 — 3.7</td>
<td>No</td>
<td>By product of drinking water disinfection</td>
</tr>
<tr>
<td>Total HAA5</td>
<td>N/A</td>
<td>60 ppb</td>
<td>ND</td>
<td>0 — 0</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Radiological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Gross Alpha (2010)</td>
<td>0</td>
<td>15 uc/</td>
<td>0.334 +/- 0.738</td>
<td>—</td>
<td>No</td>
<td>Decay of natural and man-made deposits</td>
</tr>
<tr>
<td>Combined Radon (2010)</td>
<td>0</td>
<td>5 pCi/L</td>
<td>1.7 +/- 0.380</td>
<td>—</td>
<td>No</td>
<td>Decay of natural and man-made deposits</td>
</tr>
<tr>
<td>Physical Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>N/A</td>
<td>15 uc</td>
<td>< 5 average</td>
<td>0 — 5</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>N/A</td>
<td>6.4 — 10.0 x10</td>
<td>7.16 average</td>
<td>6.61 — 8.86</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Summary of Water Quality for the Calendar year 2021

* Lead and Copper are reported as the 90th percentile

Inorganic compounds
- Chloride (2019): N/A, 250 ppm, 23.3 ppm, No, Runoff from natural deposits.
- Nitrate as N (2011): 10 ppm, 10 ppm, 1.0, <0.5 — 1 — 100, No, Runoff from fertilizer use; leaching from septic tanks.
- Sodium (2010): N/A, N/A, 15 ppm, No, Naturally occurring.
- Sulfate (2010): N/A, N/A, 5.5, No, Runoff from natural deposits, industrial waste.
- Barium MCLG (2016): 2, 2, 0.06, No, Erosion of natural deposits.

Microbiological
- Turbidity: N/A, TT + 5 eu max, 0.13 average, 0.1 — 0.6, No, Soil runoff.

Organic compounds
- Free Chlorine (2016): 4 ppm, 0.7 ppm, 0.1 — 1.95, No, By product of drinking water disinfection.
- Total Trihalomethanes: N/A, 80 ppb, 3.7, 3.2 — 3.7, No, By product of drinking water disinfection.
- Total HAA5: N/A, 60 ppb, ND, 0 — 0, No.

Radiological
- Net Gross Alpha (2010): 0, 15 uc, 0.334 +/- 0.738, —, No, Decay of natural and man-made deposits.
- Combined Radon (2010): 0, 5 pCi/L, 1.7 +/- 0.380, —, No, Decay of natural and man-made deposits.

Physical Characteristics
- Color: N/A, 15 uc, < 5 average, 0 — 5, No.
- pH: N/A, 6.4 — 10.0 x10, 7.16 average, 6.61 — 8.86, No.

Bacteriological
- Total Coliform: 0, Routine test positive, 0, 0, No, Naturally present in environment.